120 research outputs found

    Spatial Patterns of Parrotfish Corallivory in the Caribbean: The Importance of Coral Taxa, Density and Size

    Get PDF
    The past few decades have seen an increase in the frequency and intensity of disturbance on coral reefs, resulting in shifts in size and composition of coral populations. These changes have lead to a renewed focus on processes that influence demographic rates in corals, such as corallivory. While previous research indicates selective corallivory among coral taxa, the importance of coral size and the density of coral colonies in influencing corallivory are unknown. We surveyed the size, taxonomy and number of bites by parrotfish per colony of corals and the abundance of three main corallivorous parrotfish (Sparisoma viride, Sparisoma aurofrenatum, Scarus vetula) at multiple spatial scales (reefs within islands: 1–100 km, and between islands: >100 km) within the Bahamas Archipelago. We used a linear mixed model to determine the influence of coral taxa, colony size, colony density, and parrotfish abundance on the intensity of corallivory (bites per m2 of coral tissue). While the effect of colony density was significant in determining the intensity of corallivory, we found no significant influence of colony size or parrotfish abundance (density, biomass or community structure). Parrotfish bites were most frequently observed on the dominant species of reef building corals (Montastraea annularis, Montastraea faveolata and Porites astreoides), yet our results indicate that when the confounding effects of colony density and size were removed, selective corallivory existed only for the less dominant Porites porites. As changes in disturbance regimes result in the decline of dominant frame-work building corals such as Montastraea spp., the projected success of P. porites on Caribbean reefs through high reproductive output, resistance to disease and rapid growth rates may be attenuated through selective corallivory by parrotfish

    The Red Sea, Coastal Landscapes, and Hominin Dispersals

    Get PDF
    This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization

    NF-kappaB Mediated Transcriptional Repression of Acid Modifying Hormone Gastrin

    Get PDF
    Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFk

    Community change within a Caribbean coral reef Marine Protected Area following two decades of local management

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e54069, doi:10.1371/journal.pone.0054069.Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs). While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP). Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth) closed to fishing, this did not hold for deeper (15 m) habitats, and there was a widespread decline (38% decrease) in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management.Funding was provided by the Saba Conservation Foundation ((SCF), King Abdullah University of Science and Technology, The Australian National University and Australian Research Council

    Heme Degrading Protein HemS Is Involved in Oxidative Stress Response of Bartonella henselae

    Get PDF
    Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe3+uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H2O2 induced oxidative stress

    Metabolite Profiling Uncovers Plasmid-Induced Cobalt Limitation under Methylotrophic Growth Conditions

    Get PDF
    BACKGROUND:The introduction and maintenance of plasmids in cells is often associated with a reduction of growth rate. The reason for this growth reduction is unclear in many cases. METHODOLOGY/PRINCIPAL FINDINGS:We observed a surprisingly large reduction in growth rate of about 50% of Methylobacterium extorquens AM1 during methylotrophic growth in the presence of a plasmid, pCM80 expressing the tetA gene, relative to the wild-type. A less pronounced growth delay during growth under non-methylotrophic growth conditions was observed; this suggested an inhibition of one-carbon metabolism rather than a general growth inhibition or metabolic burden. Metabolome analyses revealed an increase in pool sizes of ethylmalonyl-CoA and methylmalonyl-CoA of more than 6- and 35-fold, respectively, relative to wild type, suggesting a strongly reduced conversion of these central intermediates, which are essential for glyoxylate regeneration in this model methylotroph. Similar results were found for M. extorquens AM1 pCM160 which confers kanamycin resistance. These intermediates of the ethylmalonyl-CoA pathway have in common their conversion by coenzyme B(12)-dependent mutases, which have cobalt as a central ligand. The one-carbon metabolism-related growth delay was restored by providing higher cobalt concentrations, by heterologous expression of isocitrate lyase as an alternative path for glyoxylate regeneration, or by identification and overproduction of proteins involved in cobalt import. CONCLUSIONS/SIGNIFICANCE:This study demonstrates that the introduction of the plasmids leads to an apparent inhibition of the cobalt-dependent enzymes of the ethylmalonyl-CoA pathway. Possible explanations are presented and point to a limited cobalt concentration in the cell as a consequence of the antibiotic stress

    Carbon Metabolism of Enterobacterial Human Pathogens Growing in Epithelial Colorectal Adenocarcinoma (Caco-2) Cells

    Get PDF
    Analysis of the genome sequences of the major human bacterial pathogens has provided a large amount of information concerning their metabolic potential. However, our knowledge of the actual metabolic pathways and metabolite fluxes occurring in these pathogens under infection conditions is still limited. In this study, we analysed the intracellular carbon metabolism of enteroinvasive Escherichia coli (EIEC HN280 and EIEC 4608-58) and Salmonella enterica Serovar Typhimurium (Stm 14028) replicating in epithelial colorectal adenocarcinoma cells (Caco-2). To this aim, we supplied [U-13C6]glucose to Caco-2 cells infected with the bacterial strains or mutants thereof impaired in the uptake of glucose, mannose and/or glucose 6-phosphate. The 13C-isotopologue patterns of protein-derived amino acids from the bacteria and the host cells were then determined by mass spectrometry. The data showed that EIEC HN280 growing in the cytosol of the host cells, as well as Stm 14028 replicating in the Salmonella-containing vacuole (SCV) utilised glucose, but not glucose 6-phosphate, other phosphorylated carbohydrates, gluconate or fatty acids as major carbon substrates. EIEC 4608-58 used C3-compound(s) in addition to glucose as carbon source. The labelling patterns reflected strain-dependent carbon flux via glycolysis and/or the Entner-Doudoroff pathway, the pentose phosphate pathway, the TCA cycle and anapleurotic reactions between PEP and oxaloacetate. Mutants of all three strains impaired in the uptake of glucose switched to C3-substrate(s) accompanied by an increased uptake of amino acids (and possibly also other anabolic monomers) from the host cell. Surprisingly, the metabolism of the host cells, as judged by the efficiency of 13C-incorporation into host cell amino acids, was not significantly affected by the infection with either of these intracellular pathogens

    Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand

    Get PDF
    The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125–124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m c−1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations
    corecore